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Abstract-To overcome the lack ofa more general method for free vibration analysis of trapezoidal
plates. a computationally ellicient and highly accurate Rayleigh-Ritz approach with the newly
developed orthogonal plate functions is proposed to solve these problems with any combination
of clamped. simply-supported and free edge support conditions. The deflection of the plate is
approximated by a set of two-dimensional orthogonal plate functions. generated using the Gram
Schmidt pr<X:edure, which ellpresses the entire plate domain into two implicitly related variables.
In the prescnt paper, the elft:cts of the fibre orientation on the vibrational behaviour of the plates
arc considered. The numerical results for isotropic and anisotropic trape7.0idal plates are presented.
Where possible, the numerical results are verified with other existing values in the literature.
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bending and twisting rigidities of orthotropic plate
Young's moduli parallel anll perpendicular to the fibres
generating function
shear modulus of elasticity
shear modulus of elasticity
thickness of plate
number of terms
bending moment perpendicular to ~ and '7 axes
twisting moment perpendicular to ~ axis
bending and twisting moment perpendicular to n direction
cos 0
sin 0
shear force perpendicular to ~ and '7 axes
shear force perpendicular to n din:ction
maximum kinetic energy
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nondimensional frequency parameter
Poisson's ratio
edge's function
angular frequency of vibration
product of terms
angle of fibre orientation
greatest integer function.
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l. I;'IjTRODCCTIO:-.i

Excellent reviews of Leissa (1969. 1977, 1981) show that extensive studies have been carried
out on the free vibration of rectangular plates; however. very little has been accomplished
on plates with other geometrical shapes. In particular, there is little information available
for trapezoidal plates. This may be due to the difficulty in forming a simple and adequate
deflection function which can apply to the entire plate domain and satisfy the boundary
conditions. More research work is needed in this area since such structural elements are
commonly encountered in modern technology. The aim of the present paper is to propose
a general energy approach using newly developed orthogonal plate functions to solve
problems in this area.

Virtually no exact solutions exist for the problem of the trapezoidal plate. not even for
the case when all edges are simply-supported. One of the earliest paper by Klein (1955)
has reported the fundamental frequency of a simply-supported trapezoidal plate using the
collocation method. After that. Chopra and Durvasula (1971. 1972) have investigated
the vibration characteristics of simply-supported. symmetric and unsymmetric trapezoidal
plates. The Galerkin method is applied with the dd1ection surface expressed in temlS of the
Fourier sine series in transformed coordinates. This method is only applicable to plates
with simply-supported boundaries. Orris and Petyt (1973) used the finite element method
with the quadrilateral plate bending element to obtain frequencies and nodal patterns for
completely clamped and simply-supported symmetrical trapezoidal plates. The upper and
lower bounds for the I1rst two frequencies of fully-clamped trapezoidal plate were reported
by Kuttla and Sigillito (llJX I). A matrix oriented numerical method has been developed
by Srinivasan and Babu (1983) for the analysis of cantilcvered quadrilateral plates. Most
recently. Saliba (I nC!. 19XX) has adopted the superposition techniques developed by Gor
man (!9SJ) to study the free vibration of simply-supported and clamped symrnetrical
trapezoidal plates.

In previous papcrs (Liew c( ill.. IlJXlJa. b) a set of two-dimensional orthogonal plate
functions was applied to study the free vibration analysis of triangular and rectangular
plates. The present paper further extends the potential of the very elJicient and highly
accurate numerical method to study transverse vibration of trapezoidal plates with dill"crent
combinations ofclamped. simply-supporteu anu free edge support conditions. It is necessary
to investigate the vibrational characteristics of trapezoidal plates with dillerent edge support
conditions so as to further understand their structural dynamic behaviour and to provide
additional design information for this type of plates.

2. DEFLECTION FUNCTION

for convenience. the normalized variables an: introduced

~ = x/a; '1 = y/c ( I )

where x and yare the rectangular coordinates. a is the side of the plate and c is the height
of the plate.

The function chosen to represent the detlection W(~. '0 is given by

lV(~".O = L C,(p,(~,'1l
i .... I

(2)

where m is the total number of terms. and C, is the unknown coetlicient to be minimized
in the Rayleigh-Ritz procedure. The two-dimensional orthogonal plate functions ¢(~.,,)

in eqn (2) are generated using the Gram-Schmidt recurrence formula (Liew <:1 al.. 1989a.
b) and arc given as
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¢",(~,,,) = ! ... (~, ,,)¢ I (~,,,) - L «/I""j¢,(~,"); m > 1.
i- 1
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(3)

The generating functions ! ...(e, ,,), as seen in eqn (3), are chosen to ensure that the higher
order members in the set of orthogonal plate functions satisfy the geometrical boundary
conditions and to reach faster convergence for the solutions. These generating functions
["'(~, ,,) are determined by the following steps:

Let

If 1 is even. then

If 1 is odd. then

r=l~l

s = 1/2; 0 ~ s ~ r

s=(I-I)/2: O~s~r-I

(4)

(5)

(6)

(7)

(8)

(9)

I lin eqn (4) denotes the greatest integer function.
The coef1lcient "'""j in eqn (3) arc obtained by multiplying appropriate orthogonal plate

functions cP,(~, ,,) by both sides of eqn (3) amI making usc of the orthogonality condition,

The coellicients «/I ..,; in eqn (3) become

ff[.. (e, ,,)e(e, ,,)¢ I (e, ")¢i(e,,,) de d'l

~..,~ H'(~. ,)~,'«. ,) d~ d, .

( 10)

(II)

where Ji) is the Kronecker ddt.t, r.(e,,,) is the weighting function and the integration is
carried out over the entire plate domain. The weighting function is used to account for the
thickness variation in the geometry which is taken as unity in the present analysis since
plates with only uniform thickness are considered.

The starting function cPl(e.,,) mentioned in eqn (3) applied to a trapezoid is given by

4

cP I (~"O = n cp.(e,,,)
•• 1

(12)

where n denotes the product of terms, n is the number of sides, and cp(e. ,,) is the edge
function which is obtained according to the individual edge support conditions. A detailed
procedure of forming (p(~, ,,) is given below:
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(a) for simply-supported edge

(b) for clamped edge

at edge ~ = a

at edge '1 = c

at edge '1 = m~+d

(13)

(c) for free edge

at edge ~ = a

at edge '1 = c

at edge" = m~+d and
( 14)

J. BOUNDARY CONDITIONS

(15)

The starting function (~I (~. '0 is chosen to satisfy at least the geometrical boundary
conditions of the plate. Better convergence is achieved if ¢I(~' '1) also satisfies the natural
boundary conditions. The geometrical houndary conditions and natural boundary con
ditions for ditl\:rent support edges are given as follows (Timoshenko. 1970):

(a) for simply-supported edge

where

(b) for clamped edge

(c) for free edge

where

II; = cos 0

II~ = sin O.

( 16)

( 17)

(I S)

( 19)

(20)

(21 )

(22)

(23)

(24)

(25)
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4. METHOD OF ANALYSIS

The approximate solutions for free vibration of a thin trapezoidal plate, shown in Fig.
I. can be derived using Rayleigh's principle. The maximum strain and kinetic energies of
the anisotropic plate arc given by

(26)

and

(27)

where p is the material density, h is the plate thickness and w is the angular frequency of
vibration.

The bending stitfnesses D,) of the plate can be expressed in terms of the orthotropic
clastic constants Q,) along the principal axis of orthotropy as follows:

where
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Q _ Elh
J

(34)II -
12(1-v 12 v2d

Q _ Vl2 E2
hJ

(35)12 -
12(I- vl2 v2d

Q _ E2h
J

(36)
22 - 12(I-v I 2v21)

G
12

h)
(37)Q66 =12

Vl2 E I = V12 E2, (38)

in which Pis the angle of fibre orientation with respect to the ~ axis shown in Fig. I, E 1

and E2 are the Young's moduli parallel and perpendicular to the fibres respectively, Vl2 and
V21 are the corresponding Poisson's ratios, and G 12 is the shear modulus of elasticity.

Substituting eqn (2) into eqns (26) and (27) and minizing the Rayleigh quotient with
respect to the undetermined coefficients C i

(39)

leads to the governing eigenvalue equation

(40)

where
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(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Equation (40) yields an eigenvalue determinant, the zeros of which give the natural fre
quencies of the plate. Back substitution yields the coetficient vectors; substitution of these
coefficient vectors into eqn (2) gives the mode shapes of the plate.

5. RESULTS AND DISCUSSION

The numerical calculations for the natural frequencies using the proposed method are
carried out for six different combinations of edge supported trapezoidal plates, namely:

(i) four edges simply-supported (S-S-S-S),
(ii) four edges fully-clamped (C-C-C-C),

(iii) one edge clamped and three edges simply-supported (C-S-S-S),
(iv) two opposite edges clamped and the other two simply-supported (C-S-C-S),
(v) cantilevered (C-F-F-F) and

(vi) one edge clamped, two opposite edges simply-supported and one edge free
(C-S-F-S).

The symbolism C-S-F-S, for example, identifies a trapezoidal plate with edges
clamped. simply-supported, free and simply-supported; start counting anticlockwise from
the base of the trapezoidal plate. The stiffness properties for the boron-epoxy are given in
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Table I. Matt:nal propertIes of umdirectional composite

Material

Isotropic
Bl1ron-epo:\y

Major das!lc
modulus. £,

(GPa)

1.0
:::04

{\lhnor elastil:
modulus. £,

(GPa)

1.0
li0\50

Shear modulus
G,:

(GPa)

OJ~5

559

Major POlsson's
ratIO. vI'

0.30
0.:::3

Table I. The obtained natural frequencies for the anisotropic plate are expressed in terms
of the nondimensional frequency parameters vO.' :

The anisotropic case can be simplified to isotropic case by setting

1'1, = I'" = 0.30

Ell'D
II

= Dp = D = ..__....._....~
•• 12( I I')

and the nondirnellsional frequency parameter j): becomes

(53)

(54)

(55)

(56)

(57)

5.1. COfll'ergcfl(,c (~lsolllli(lll

The Rayleigh Ritl. energy approach gives an upper-bound solution to the e.'mct value.
A convergence study is carried out so as to ensure that the solutions to the problem are
convergent and to establish the optimum number of terms required in the deflection function
in order to obtain satisl:tctory results.

Tables:: and J arc the convergence patterns of the Iirst four nondimensional frequency
parameters for the simply-supported and fully-damped isotropic trapezoidal plates with
ratio hfa = 1/5 and 3/5. respectively. It can be observed from the Tables 2 and 3 that it is
sutIicient to take m = 20 to reach stabk convergence since m = 24 produces no drastic
change in the solutions compared with that obtained with m = 20.

The convergence patterns of the fundamental nondimensional frequency parameters
for the simply-supported and fully-clamped anisotropic trapezoidal plates arc given in
Tables 4 and 5. The fundamental nondimensional frequency parameters are studied by

Taole 2. Convergcnce pattern ufthe llondimensional frcljuency parameter J i.~ = (li)(/'j21l)( ph!D) j'
Ilf;t simply-supported isotropic trapc:mitl;lI platc (<tIc = 1.0)

Mode Numhcr of tcrms. m
!>'tI no. 4 X 12 16 20 :::4

6.67 6.02 6.0::: 6.01 6.01 6.01

1;5
::: 2(1.O I I.1.()) 1:::.8.1 1:::.73 1:::.71 12.69
3 20,19 1'1.08 15.41'1 15.46 15.34 15.34
4 37.64 35.77 22.6.1 22.5) 21.82 21.73

4.3-1 4.0'1 4.1N 4.01' 4.01' -1.01'1

3/5
2 11.95 9.42 9.01 8.9-1 8.93 1'.91
3 1.'.15 13.52 11.l9 II.l7 ILl2 11.l2
4 :::1.36 20.08 17.67 16.93 16.76 16.72
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Table 3. Convergence pattern of the nondimensional frequency parameter ../f = (wa:12lt)( ph D) I ,

of a fuUy-clamped isotropic trapezoidal plate (ale = 1.0)

Mode Number of terms. '"
b.a no. 4 8 L! 16 20 24

I 11.48 11.33 11.33 11.33 11.32 11.32

I 5
2 24.18 19.92 19.46 19.45 19.45 19.45
3 25.55 23.99 23.32 23.31 23.30 23.30
4 39.84 37.94 32.21 30.70 30.59 30.57

I 7.62 7.57 7.56 7.55 7.55 7.55

35
2 15.34 13.44 13.35 1335 13.34 13.34
3 16.98 16.98 16.71 16.71 16.70 16.70
4 24.39 23.55 22.58 22.56 22A4 22.42

Table 4. Convergence pattern~9Lt.h~ fundamental nondimensional frequency par-
ameter P = (wa'121t)(phIJO"O,:l" of a simply-supported boron-epo,y trap-

ezoidal plate (a/e = 1.0)

Angle Number of terms. m
hla (J" 4 8 12 16 20

0 6.46 5.61 5.56 5.51 5.51

1/5
15 6.82 5.1\9 5.85 5.81 5.80
30 7.60 6.64 6.62 6.60 6.59
45 li.N 7.32 7.31 7.)0 7.30

0 3.7') 3.63 3.62 3.61 3.61

3/5
15 4.24 4.0(, 4.05 4.05 4.04
}I) 5.1)9 4.ll5 4.li} 4.li.1 4.li3
45 5.64 5.34 5.33 5,3} 5.33

Tahlc 5. Convergence patter!) of the fundamental nondimensional frcl\uency par-
amcter J;: '" (wa'/21tH""1J O"D,,)' '0[;' fully-damped boron eplay trapcl.oid.11

p(;ltc (ale = 1.0)

Anglc Number of terms. m
hla If' 4 8 12 16 20

0 12.26 10,45 9.n 9.43 9.43

1/5
IS 12.4!! 10.95 10.42 10.22 10.22
31) 13.02 12.15 11.99 11.9) 11.93
45 13.5!! D.30 I.UI) D.29 13.29

0 7.59 7.51 7.48 7.47 7.47

3/5
15 7.91 7.6!l 7.65 7.64 7.64
}O 8.35 !l.15 K.12 8. I I !l.11
4S 8,94 8.!l4 8.X2 8.81 !l.XI

varying the number of terms m for dilferent ratio h/a = I/S and 3/5. The study shows that
staok and I:onvcrgent n:sults ,Ire oowined when 11/ = 16 is used.

To optimize the usage ofcomputational time and to obt,lin satisfactory results. m = 20
is used for the isotropic cases to calculate the first four nondimensional frequency parameters
and m = 16 is used for the anisotropic cases to compute the fundamental nondimensional
frequency parameters.

5.2. Numerical results
The nondimensional frequency parameters of the simply-supported isotropic trap

ezoidal plate with different h/a ratio are given in Table 6. The ratio h/a = 0 is corresponding
to an isosceles triangular plate and h/a = I is a square plate. The present results arc
compared with the values of Chopra and Durvasula (1971). Close agreement is seen to
exist between the present results and those of the Chopra and Durvasula (1971).
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Table 6. Comparison of the nondimcnsional frequency parameter .../ A.'
= (w,,: 21l)(phDl': of a simply-supported isotropic trapezoidal plate

(". c = 1.0)

Mode numbers
b'" Reference 2 3 4

0
Chopra 730 16.37 176'1 28.26
Present 730 16.32 17.64 2843

1,5
Chopra 6.Ul [2.68 15.38 21.46
Present 6.01 12.69 15.34 21.73

2'5
Chopra 4.90 10.17 13.19 1805
Present HO 10.24 \3.17 17.72

3/5
Chopra 4.08 8.91 11.14 16.74
Present 4.08 891 1112 16.72

4/5
Chopra 352 824 931 14.16
Present 3.52 8.24 9.29 14.20

1.0
Chopra 3.14 7.85 7.85 12.57
Present 3.14 7.84 7.84 12.59

The second set of results available for the comparison is the case for fully-clamped
isotropic trapezoidal plate. The nondimensional frequency parameters of the fully-clamped
trapezoidal plate together with the upper and lower bound solutions of Kuttler and Sigillito
(1981) are tabulated in Table 7. Since only the first two frequencies arc published by Kuttler
and Sigilli to. the present results arc compared with these two values. The comparison shows
that the present solutions arc within the upper and lower bound solutions of Kuttler and
Sigilli to.

The variation of the nondimensional frequency parameters with different h/a ratios
for thc C SS S, esc S, C F F F and C S F S isotropil: trapezoidal plates is given
in Tahles 8 II. It is evident from the tahles that the nondimensional frequenl:y parameter
del:reases with the increase in the h/a ratio. This behavior is expl:cted bCl:ause with the
inl:rease in thc h/ll ratio. the flexibility of the plate also increases.

To investigate the inlluenl:e of the fibre orientation on the vibration behaviour of
trapezoidal plates. the six examples arc again analysed with different fixcd ratio h/a. The
numerkal results arc presented graphically for the simply-supported. fully-clamped. C-S-·
S -So CoS -C· S. C-f~F-F and C-S-·C-f trapezoidal plates with different fibre orientation
angle a varying from 0' to 90 .

Tablt: 7. Comparison of the nondimensional frequency parameter ~).--. = (o)//ll

21l)( phiD)" l of a fully-clamped isotropic trapezoidal plate (ail' = 1.D)

Mode numhers
bi" Reference 2 3 4

Kuttler (upper bounds) 13.73 25.41
U Kuttler (lower bounds) 13.70 25.2H

Present 13.73 25.40 26.9H 39.46
Kuttlt:r (upper bounds) 11.35 19.93

liS Kutller (lower bounds) 11.31 [9.77
Present 11.32 19.45 23.30 30.57
Kuttler (upper bounds) 9.23 15.63

2;5 Kuttler (lower bounds) 9.IH 15.45
Present 9.22 15.59 19.H7 24.55
Kuttler (Lipper bounds) 7.57 13.39

3,5 Kutller (lower bounds) 7.52 13.27
Present 7.55 13.34 16.70 22.42
Kutller (upper bounds) 6.45 12.30

4.'5 Kuttler (lower bounds) 6.41 12.20
Present 6.44 12.27 13.88 19.44
Kuttler (upper bounds) 5.73 11.10

1.0 Kutller (lower bounds) 5.12 11.61
Present 5.73 11.68 11.68 17.22
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Table 8. The nondimcnsional frequency parameter jf
= (wa l ;2/t)(ph, D) I l of a C->->-S isotropic trapezoidal

plate (a e = 1.0)

Mode numbers
ba 2 3 4

0 9.02 18.93 20.21 31.71
I S 7.26 I·US 17.24 24.14
2 5 5.80 11.72 14,48 20.~

35 4.80 lOAD 11.94 18.16
4 S 4.16 9.73 9.81 15.34
1.0 3.76 S.:!! 9.34 13.71

Table 9. The nondimensional frequency parameter 'Vi;:
= (wa l /2/t)(phfD)"l of a C-S-C-S isotropic trapezoidal

plate (£I,e = 1.0)

Mode numbers
h.LI 2 3 4

0 9.02 18.93 20.21 31.71
15 7.30 I·UO 17.25 24.7'2-
2 5 /l.llX 12.76 14,49 22.33
3,5 5.3S Iun 12.04 IX.71{
4 S 4.90 10,10 11.34 16.~

1.0 4.6\ !UO II.OJ IS.llS

Tank 10. The 11I'lldilllensiollal frequency paralllcicr J;..'
C,-_ (wa'/2lt)(/,h/lJ)': of a <: F F F isotropic lrapewidal

plate (a!e '" 1.0)

Mode numhcrs
h,a 2 3 ..
0 \.07 4.04 4.()5 II.ll3
liS 0.1l2 3.S.1 3.IlX 9.20
2/5 0.70 2.66 3.67 7.31
3/5 0.64 2.06 3.S6 6.20
4/5 0.59 1.65 3,4X 5.46
1.0 0.55 1.36 3.39 4.36

Table II. The nondimensional frequem:y paramder Ji;
= (wlllj2rr)(pIJID) I l of a C-S-F·-S isotropic trapezoidal

plale (afe = 1.0)

Mode numbers
h'a 2 3 4

0 9.02 \8.93 20.21 31.71
1/5 7.23 14.36 17.24 23.14
2!5 5.53 9.10 14.4M 15.91
3(5 3.92 7.08 lun 13.15
-:5 2.75 5. IoN 9.()J 12.11
1.0 2.02 5.27 6.63 10.05
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The fundamental frequency parameters for the simply-supported anisotropic plate
with etilTerent fibre orientation angles fJ at the fixed h/a ratios are given in Fig. 2. A maximum
frequency occurred at fJ = 45' for the isosceles triangular plate (h/a = 0). For trapezoidal
plates with h/a "" 0.2 and 0.4. both maximum frequencies occurred at fJ = 30". The
maximum frequencies for the trapezoidal phltc with b/ll in the ranges from 0.6 to 1.0
occurred at fJ = 45'.
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Fig. 2. Variation of frequency parameter with respect to fibre orientation of a simply-supported
trapezoidal plate (ale = 1.0).

The variation of the frequency parameters with respect to the fibre orientation of the
fully-clamped anisotropic tmpezoidal plate is presented in Fig. 3. The maximum frequency
for thc ratio hill = 0 occurrcd at If = 45'. When ratio h/a = 0.2 and 0.4, frequencies reach
maximum at /1 = 30' and 15 . Further increase in the mtio hill from 0.4 to I and all
maximum frequcncies are at /1 = 0'.

Figure 4 shows the results for the CSS·S anisotropic trapezoid.tI plate. For ratios
within the range 0 ~ h/a ~ 1.0, maximum frequencies occurred at /J = 45', except for the
ratio hill = 1.0 wherc the maximum value occurred at /J = 60".

The variation of the frequency parameters with respect to the fibrc orientation of the
C ·S-(,-S anisotropic trapezoidal plate is given in Fig. 5. For the ratio h/u = 0-0.2,0.4,0.6
and O.l~-I.O, the maximum frequencies occur at/J = 45',60". 75" and 90" which can be seen
from the figure.

All maximum frequencies occurred at IJ = 90' for the cantilevered anisotropil.:
trapezoidal plate with fixed ratio hill as shown in Fig. 6.

Fig. 3. Variation of frequency parameter with respect to fibre orientation of a fully-clamped
trapezoidal plate (ale = 1.0).
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Fig. 4. Variation of frequency parameter with respect to fibre orientation of a C-S-S-S trapezoidal
plate (ale = 1.0).

The results for the C-5--F-S anisolropic trapezoidal plate are given in Fig. 7. For ratio
hla = O-O.:!. 0.4. 0.6 and O,R-l.O. maximum frelJuencies occurred at II = 45'. 30". 15"
and 0' which can he ohserved from Ihe figure.

It can he concluded from the ahove investigation Ihat the effect of fibre orientation on
the vihration frcqucncy depends on the houndary conditions and the h/a ratio of the plates.

6. CONCLUSION

The papcr has prescnted the free vibration studies of symmetrical isotropic and aniso
tropic trapezoidal plates. The proposed mcthod adoptcd the Rayleigh-Ritz energy approach
and cmploycd the two-dimensional orthogonal plate functions as the admissible functions
to approximate thc natural frelJucncy of thc trapczoidal plates with different combinations
of c1ampcd. simply-supportcd and free cdgc support conditions.

18 ,
16

T~
~

c S S I

I' 1. t... I-1-l
l:::! 12 ~....
~ 'Ia' Q£ 10

~
~
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~

~ .,..1
2

0 15 ]0 ~5 60 75 90
FIBRE ORIENTATION ~

Fig. 5. Variation of frequency parameter with respect to fibre orientation ofa C-S-C-S trapezoidal
plate (ale = 1.0).
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Fig. 6. Variation of frequency parameter with respect to fibre orientation of a cantilevered trap
ezoidal plate (ale = 1.0).

Numerical results for six different edge supported trapezoidal plates arc presented.
These values have been verified with the available literature results for the isotropic simply
supported and fully-clamped trapezoidal plates. No comparison can be made for the iso
tropic C-5 -5·S. C-SC-S. C-F-F-F and C-S ·C-F trapezoidal plates because no results
for such cases arc available.

To show the effect of the fibre orientation on the vibrational behaviour of the trap
ezoidal plates. the six plates previous study are again analyzed with different angles of fibre
orientation varying from zero to ninety degrees. The study shows that this effect depends
on the boundary conditions of the plate and the h/ll ratio. This observation is particularly
important since composite plates are commonly used in modern technology nowadays. It
provides valuable information for researchers and engineers in design applications.
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